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Vacuum radiation pressure on moving mirrors 
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Abstract We consider a perfectly reflecting plane minor moving in the vacuum of the 
elecuomagnetic field. The motional modification of the Maxwell stress tensor is computed 
up to first order in the displacement of the mirror. The resulting dissipative force is shown W 
be related to the creation of Iravdling-wave low-frequency photons and to obey the fluctuation- 
dissipation theorem. 

1. Introduction 

Quantum field theory with moving boundaries has been studied since the early 70’s. As 
shown by Fulling and Davies for the particular case of a one-dimensional scalar-field model, 
a mirror non-uniformly accelerated in vacuum emits radiation [l]. In the non-relativistic 
limit, the corresponding radiation reaction force was shown [2] to obey the fluctuation- 
dissipation theorem of linear response theory 131. The linear approximation (corrections 
corresponding to the motional effect considered to first order in mirror’s displacement) was 
first employed by Ford and Vilenkin in order to obtain the vacuum radiation pressure for a 
three-dimensional scalar field [41. 

The fluctuations of the electromagnetic radiation pressure on a flat perfectly reflecting 
mirror at rest in (three-dimensional) vacuum were computed by Barton [SI. The dissipative 
force was then inferred by using the fluctuation-dissipation theorem [6-8]. This method 
was recently criticized by Eberlein [91 on the basis that no Hamiltonian formalism exists for 
perfectly reflecting moving mirrors, as shown in [IO] (such approach is possible, however, 
for dieletric plates [Ill). Hence, the standard perturbation theory, which is vital in Kubo’s 
approach to linear response theory [31, cannot be applied to such a model. Furthermore, the 
dispersive component of the motional force cannot be inferred from the results in [6-8], for 
they predict a force depending on the instantaneous position of the mirror 1121, and thus 
dispersion relations are not satisfied, as discussed in [81. 

In this paper we derive a modification of the Maxwell stress tensor to first order of mirror 
displacement. We then obtain the motional radiation pressure (in the linear approximation) 
exerted by the electromagnetic field on an (infinite) perfectly reflecting plane mirror. We find 
a dissipative component which is in agreement with the fluctuationdissipation theorem- 
thus confirming the results in [6-8]-and a divergent dispersive component. The physical 
origin of both components is clearly identified in our approach. The dispersive force is 

t Present adress: Departamento de Flsica, PUCRio, Cairn Poslal38071, 224.52 Rio de Janeiro RJ. Brazil. 
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related to evanescent waves which are confined near the surface of the mirror, whereas the 
dissipative force is the mechanical effect of a motionally induced emission of radiaton. 

In the derivation of the motional modification of the Maxwell streSs tensor in vacuum, 
our first step is to solve the classical electromagnetic scattering by a moving mirror. In 
the next section, the scattered fields are computed up to first order in minor displacement, 
from which follows the derivation of the vacuum radiation pressure in section 3. A general 
discussion of our results is presented in section 4. 

2. Scattering by moving mirrors 

Consider a flat perfectly reflecting mirror moving along the normal to its surface, 2. We 
assume that the electromagnetic fields E' and B' measured io the instantaneously co-moving 
Lorentz frame Si obey the boundary conditions 

2 x E' 0 P * B' 0. (1) 
As usual in electromagnetic scamring theory, we resolve the input plane waves into 
components corresponding to the eleccn'c field parallel m or perpendicular m) to the 
plane of incidence. Since the polarization is conserved in the scattering by the flat infinite 
mirror, we have two independent problems to solve. We associate a scalar field with 
each polarization and then derive Dirichlet and Neumann boundary conditions for the scalar 
fields corresponding to TE and TM polarizations, respectively. We use MKs units and assume 
€0 = 1, c = 1. 

We analyse the scattering of T@ incident waves by considering the vector potential Am), 
defined through the equations 

E" = -&Am) and Bm) = V x A m  (2) 

V - A O = O .  (3) 

and which is taken in the laboratory fiame. Moreover, we take the Coulomb gauge, 

As shown in appendix A, the boundary condition for the vector potential Am) that follows 
from equations (1) and (2) is given by: 

(4) 
where Sq(t) is the position of the mirror at b e  t. 

The plane symmetry implies as well that the component of the wave vector parallel to 
the plane of the mirror is conserved. Hence it is convenient to work with a mixed reciprocal 
space, in which we take the Fourier transform of the variable rII = (y. z),  which corresponds 
to the position on the mirror's surface, while keeping the coordinate x, which is important 
to describe the mirror's motion. We then define the Fourier transfonn F[x, kg, 4 of a 
function F(x, q, t )  as 

Am)(, = 6q(t), y ,  z ,  t )  = 0 

F[x, kll, 01 = dt d2rl~e"'e-ikl''~F( x, q .  t )  (5) J S  
and use Fourier-transformed fields as in equation (5) throughout this paper. Equation (5) 
corresponds to a plane-wave decomposition of F(x, q ,  t). If F(x.  T I .  t) is a solution of 
the wave equation, then F[x, kll, 01 should be of the form (cf also appendix A) 

(6) 

U) 

F[x, IC,, 01 = exp[fi,xIFtO, ku, 01 

E -+ 0' 
with 

kx = [(U + ie)' - k;]1'2 
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defined as a function in the complex plane of o with a branch cut along the segment on 
the real axis between -kn and kll (we have set kll = IkllI). Equation (6) means that given 
values of kll and o compond to a plane wave with wavevector IC = k,f + kll. Note that 
imaginary values of kx are admitted in equation (7). They correspond to evanescent waves 
that propagate parallel to the plane x = 0. 

We solve the wave equation for the Dirichlet boundary condition given by equation (4). 
The simplest approach is to decompose the total field A 0  into a given incident field 4y) 
(for instance, a plane wave, but we assume only that ACE) satisfies the wave equation) plus 
a scattered outgoing field AVE): 

(8) 

and then solve for AT’) in terms of 4y). 
We derive in appendix A the scattered field up to first order in Sq. we assume x -= 0, 

the results for x > 0 following by symmetry arguments. We use @(U) to represent the step 
function. We find 

(9) 

AcTE’[x, ICII, W I G  &% kll, 01 + A F b ,  ~ I I ,  01 

A,n”’[x, ICs, 01 = -4y)r-x. lei, WI + SACrs)1x, ICli, @I 

with kx and k; given by equation (7) as functions of o and o’. 
In the case of TM polarization, the Lorentz boost to the CO-moving frame mixes the 

components of the vector potential A (in the laboratory frame) parallel and perpendicular to 
the plane of the mirror. Then equations (1) and (2) entail a complicated boundary condition 
for the components of A. The invariance of the free-space Maxwell equations under the 
duality transformation 

E - t B  B + - E .  (11) 
suggests a simpler method, which is based on the definition of a new vector potential dm) 
(taken as well in the laboratory frame) using the formulae 

EW) = v AVM) ~ m )  = a,Am) (12) 
and 

v . 0. 

The boundary condition for the potential AVM) is derived from equations (1) and (12) in 
appendix A: 

[a, + ~ q ( r ) a ,  + O ( S ~ ) ~ I A ~ % ,  rll, r)ixSqo, = o (14) 
where Sq( t )  is the velocity of the mirror. The first-order scattered field is found to be (for 
x CO) 

The first terms in the RHS of (9) and (15) represent the field scattered by a mirror at rest at 
x = 0. The motional effect is represented by the terms 6AVE) and SAW). muations (10) 
and (16) explicitly display the conservation of 811 as well as of the polarization, in agreement 
with our previous discussion. Furthermore, it shows that the scattered fields propagate from 
the plane at x = 0 into the half space x < 0, provided that o > kll (cf equation (6)). 
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Otherwise, we have evanescent waves that decay along the x-direction. Each incident 
spectral component at o' generates an elastic component at o = U', which is just the 
normally-reflected wave (first term in the RIts of equations (9) and (IS)), and inelastic 
components (sidebands) at o = o' + Q corresponding to each spectral component of the 
motion Q. In the particular case of harmonic motion at frequency Q (and amplitude Gqo), 

Gq[o]= R8qo[S(o - n) + S(o + Q)]. (17) 
there are only two sidebands at o = o'f Q, with amplitudes proportional to k'$qo. They 
propagate along different spatial directions (for they correspond to different values of s), 
as shown in figure 1. The downshifted sideband corresponds to an evanescent wave if 
Q > o' - kll. This example is a limiting case of a more realistic situation in which the 
mirror is initially at rest at x = 0, then begins to oscillate up to a given later time, and 
finally stops again. We then have finite spectral bandwidths instead of the delta functions of 
equation (17), and the scattering of an incident plane wave generates a continuum centered 
around the two sidebands shown in figure 1. Actually, the important assumption used in the 
derivation of the scattered fields presented in appendix A is that the motion is bounded, and 
that the maximum displacement is much smaller than the relevant scattered wavelengths, so 
that the fields are nearly constant over a distance of the order of &(f) along then direction. 

(-1) 
in f (0) 

........................................... I 

Figure 1. An input electromagnetic wave (in) is scanered by a plane mirmr OSeiUating along 
its normal dimtion (6). Besides the central component (0), two sidebands are generated. 
corresponding to upshifted (-1) and downshifted (1) frequencies. 6qo represents the amplitude 
ofthe motion. 

In the next two sections, we discuss how the vacuum fluctuations coming from infinity 
are modified by the presence of a moving mirror. It then turns out that the long-wavelength 
approximation mentioned above is related to the non-relativistic limit. Using equations (9)- 
(10) and (15x16). we compute, in the next section, the motional modification of the 
Maxwell stress tensor and the vacuum radiation pressure on a moving mirror. 

3. Vacuum radiation pressure 

In this section, we consider the motional scattering of the input vacuum fluctuations. In 
appendix B, we discuss the quantization of the electromagnetic fields in terms of the vector 
potentials Am) and A"M). According to equations (3) and (13), they are both transverse 
fields that satisfy the wave equation. The electric and magnetic fields are given by 

We first consider the fluctuations coming from the half-space x < 0, and then use 
symmetry arguments to infer the effect of the fluctuations coming from the opposite 
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side. Accordingly, we consider the free fields A , ~ ) ( T ,  t )  and AisfM'(r, t) that propagate 
from x = -co towards the mirror. Thus, their normal-mode expansions in terms of the 
annihilation operators afm, a,""" and their Hermitian conjugates (corresponding to photon 
creation) ay) '  and arM)' include only wavevectors k such that k, > 0 

where HC means the Hermitian conjugate of the preceding expression. Both polarizatio& 
are written in terms~ of the same unit vectors &, which are perpendicular to the plane 
containing the vectors k and 2:  

The operators at' ,  with j representing the polarization ( j  = TE,TM), obey the 
commutation relations 

As discussed in the previous section, it is useful to work with the mixed reciprocal 
space defined by equation (3, which jointly with equation (20) yield 

A,y)[x, kll, w] = 8(kX2) Lr frlwl 8(w)e'axaf%k +8(-w)e-ikzxam)'" -k €41 (24) 

where A = kZi + kll, with k, taken as a function of w and kll as in equation (7). Of course, 
equation (20) yields an analogous expression for Ay)(r ,  t) in terms of the operators akm) 
and their Hermitian conjugates. The com.spondence between the annihilation operators 
and positive frequencies, on one hand, and between the creation operators and negative 
frequencies on the other hand, is explictly displayed in equation (24). This will be important 
in the discussion presented in the next section. 

We now take equation (1) as operators identities for the total electric and magnetic 
fields. Equations (9), (10) and (15). (16) are then relations between quantum operators, thus 
providing representations for the operators A,m)[x, kll, 01 and A $ $ [ x ,  kl,. 01 in terms of 
the operators a t )  and at)', which correspond to the normal-mode decomposition of the 
input field. 

We assume that the mirror is initially at rest at x = 0 (t --f --CO). Before the mirror 
starts its motion, the scattered field is just the normally-reflected field. Its normal mode 
decomposition is written exactly as in equation (20jexcept  for the sign corresponding to 
the propagation along the x-direction and for a phase factor in the case of E polarization- 
in terms of the same operators at' .  Accordingly. the vacuum state l0)i. with respect to the 
operators at' corresponds to the zero-point fluctuations at r + -eo, which are modified on 
account of the mirror's motion. Such motional effect is described through the modification 
of the field operators (the Heisenberg picture, but there is no Hamiltonian formalism, as 
shown in [lo]) according to equations (10) and (16). 

The connection with mechanical effects is provided by the (mean) Maxwell stress tensor, 
written in terms of suitably defined symmetrical correlation functions, taken over the vacuum 
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input state 10)in. We show that the motional modification of the fields entails a mean radiation 
pressure Sp on the mirror, which is given by 

(25) sp  = (Oh ,T , (X  = O+) - T& = o-)lo)in + O(Sq2) 

Trx(x, TI[. t) = -(E: + B,” - E :  - Bi) .  

with the x x  component of the Maxwell stress tensor given by 
1 
2 (26) 

From now on we use the shortening (. . .) to denote the average over the state 10)b. We 
decompose the electric and magnetic fields as in equations (18) and (19). We then take the 
Fourier transform of equation (26) and find 

where &I, k l l l ,~1 ;x~ ,kq .mz1  = o[1;21 is the sum of the symmetrical correlation 
functions 

(28) 

UgM)[1;21 ( I . A ~ [ ~ i , k i ~ ~ . ~ l l , . A m n ) [ ~ z , k z ~ ~ , ~ l ~ )  (29) 

The symmetrical correIation function of the input field A,Y) as well as of e) is 

ccTE)tl; 21 = (tA”k, kill, 011, A Q h  kq, ~ ~ 1 1 )  
and 

with [ , } designating the anticommutator. 

easily derived from equation (24). 
gin (rE) U; 21 = ( ( A y [ x i ,  kig, ~ i l A ~ ) [ x z .  kzl13 w~ll), 

e%lsn-xz) 

lklxl 
where kl, = [(@I+ ie)’ - k1$’P; and of course, 

uzE)[1; 21 = 4z3Fi0(k1:) m i  f w z ) W l ,  +kO) (30) 

qy)[l; 21 = U p [ ’ ;  21. (31) 
Since the average radiation pressure on a standing mirror vanishes, only the motional 

modification of the stress tensor T,, contributes to equation (U). We set 

(Txz) = (TA) + ( S T X X )  (32) 
where (T&) is the SWS tensor for a mirror at rest at x = 0, and (ST,) its motional 
correction to first order in 6q. The latter is obtained by replacing the first-order correction 
to the correlation function U into equation (27). Accordingly, we write 

&) = 0:) + s&) j = E, TM (33) 

where U:) corresponds to the correlation functions when the mirror is at rest at x = 0, and 
Suu) its first-order correction, corresponding to the motional effect 

The simplest representation is to write su W; 21 as the symmetrical part of a function 

(34) 

(35) 

Sc’i)[l; 21: 
S U q l ;  21 = 6c”’[1; 21 + 6 C q z  11. 

From equations (10) and (30), we derive the following result for j = TE: 
scgE)[l; 21 = - 8 z 2 ~ ~ ( k i : )  sin(lkl,Ixi)e-~””~q~wl+ wzlS(k11+ kzll). 
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Instead of equation (10). we use equation (16) in order to obtain Scm)[ l ;  21: 

The contribution of TE-polarized waves to the motional modification of the stress tensor 
is then found by replacing equations (34) and (35) into equation (27) and evaluating the 
resulting integral: 

for x e 0. The result for x > 0 is found by replacing x by -x and changing the sign in 
equation (37). Not surprisingly, we find Ford's and Wenkin's result [4] for a scalar field 
obeying Dirichlet boundary condition on a flat moving mirror. For us, this is an auxiliary 
result in the derivation of stress tensor for the electromagnetic field. We have to add to the 
RHS of (37) the contribution corresponding to TM-polarized waves, which is obtained in a 
similar way, by substituting equation (36) into equation (27): 

Adding the RHS of equations (37) and (38) leads to the motional modification of the 
electromagnetic stress tensor, which is written in the time domain as 

where SqCn)(f) represents the nth time derivative of the mirror's displacement Sq(t). Finally, 
we derive the radiation pressure by evaluating equation (39) at x = Sx --f 0 and using 
equation (25): 

4. Discussion 

In thii section we discuss the meaning of equation (40), which is the central result of this 
paper. First, we show that this result is in full agreement with the fluctuation-dissipation 
theorem, which is more easily stated in the spectral domain. The motional radiation pressure. 
given by equation (40) is then written in terms of a susceptibility function x[o] and of the 
surface of the mirror A: 

MO]= x[~IWLJI /A 
AA 0 4  . 

x[ol= -(- + lo5), 30n2 Sx 
The imaginary part of x[ol represents the dissipative part of the motional force. As we 
show below, I m x [ o ]  is related to the spectrum of fluctuations of the force exerted by 
vacuum on the mirror at rest, defined as 

C.UF[W] = / dte'"'((F(t)F(O)) - (WeZ). 

The result for CFF[W] found in [7, 81 is 

(43) 
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It follows from equations (42) and (44) that the dissipative component of susceptibility and 
the spectrum of fluctuations are related by 

(45) 
1 

?A Imx[wl = - ( c F F I w l -  CFF[--OI) 

in agreement with the fluctuation-dissipation theorem [31. 
Far more intriguing is the dispersive component appearing as well in equation (42), 

which diverges when 8.x vanishes. Such anomaly also occurs for the three-dimensional 
Dirichlet scalar field considered by Ford and Vilenkin [4] (cf equation (37)). The need for 
a re-examination of this result was recently emphasized by Barton (see the final remarb in 
[7]). As discussed below, the physical origin of both dissipative and dispersive components 
may be clearly identified within OUT approach, allowing us to check the validity of the 
assumptions that led to equation (40). 

In the linear approximation, the total radiation pressure is the superposition of the 
pressure corresponding to each specid component of the motion, which may be treated 
separately (cf equation (41)). On the other hand, the input fields may also be decomposed 
into their plane-wave components, which are specified by given values of frequency 
and parallel wavevector, win and kll. The susceptibility x[w]  specifies, according to 
equation (41), the combined effect of all the plane-wave components scattered by the 
motional Fourier component at w. The elementary processes in which a given motional 
frequency w scatters a given plane-wave component (wb. IC$ was analysed in detail in 
section 2, where we showed that it generates a sideband at w, = wi.+o with the same value 
of kll. We may derive a representation in which x[w] explicitly appears as a superposition 
of all the relevant plane-wave components by taking the limit x + 0 from the beginning 
in equations (27), (35) and (36), 

where ki, = (U; - k;)'I2 and t, = [(os + is)2 - k31/2 represent the x component of the 
input and output wavevectors, respectively . 

The region of integration in equation (46) represents the entire set of Fourier components 
that correspond to propagating waves. It is divided in four subsets, denoted RI to %, that 
are shown in figure 2 (where w is taken to be positive). Input evanescent waves, which are 
represented by the grey region in the figure, do not contribute to ~ [ w ]  because there are no 
evanescent-wave solutions for a perfect mirror at rest and hence no first-order correction to 
the correlation function U.  

We may represent graphically the generation of a sideband from a given plane-wave 
component (ma, IC#) in figure 2 as a horizontal shift, by an amount of U,  from the point that 
represents (win, LII)  in the diagram. Thus the region k represents input propagating waves 
that scatter into evanescent waves: lw,l .c kll, whereas RI to R3 contain those that give rise 
to propagating waves, R3 being the subset corresponding to the negative input frequencies 
wjn that generate propagating waves at the positive part of the spectrum. Equation (46) 
immediately shows that the imaginary (dissipative) and real (dispersive) parts of ~ [ w ]  come 
from R3 and &, respectively, whereas the integrals over RI and Rz cancel each other. 
In fact, performing the integral over R3 leads to the dissipative pressure already found in 
equation (40). Thus, equation (46) relates the dissipative pressure to the map of negative 
into positive frequencies (and vice versa, because the motional spectrum necessarily contains 
both positive and negative frequencies since 6q(r)  is real). Furthermore, the negative 
input frequencies which are scattered into positive frequencies corresponding to evanescent 
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I ,  I I I , v  , o  
-3w -2w -0 0 W 2w 

Figure 2. Diagram representing input waves scanered by a plane mirror. Each point corresponds 
to a given input frequency win and m v e r s e  wavevector til. The grey region contains the input 
evanescent waves (01. < kll), which do not conuibute U) the motional effect. Regions RI to R4. 
contab input travelling waves, R1 and R4 providing the dissipative and dispersive components 
of the radiation pressure at frequency w ,  respectively. The contributions from R I  and R2 cancel 
each other. 

waves (the low-frequency part of R4 in figure 2) contribute to the dispersive and not to the 
dissipative component. As shown by equation (24), positive and negative input frequencies 
correspond to annihilation and creation operators. Therefore, our approach indicates that the 
dissipative motional force is related to the creation of mvelling-wave photons, in agreement 
with its interpretation as a radiation-reaction force. However, we cannot compute the 
radiated energy within the linear approximation. In fact, we may follow [4] and assume the 
radiated energy rate to be equal to the power dissipated by the motional force. The energy 
radiated is then given by 

(47) 
m 

E = - l, dt F ( t )  se@). 

We then find from equations (40) and (47) 

As in the classical electron theory, a linear radiation reaction force implies a second-order 
rate of energy radiation. 

We may now discuss how the linear approximation is related to the non-relativistic limit. 
If 

/do~lo~&[@ll  < 1 (49) 

then IStj(t)l < 1. Since the input modes that contribute to the dissipative force belong to 
R3, they satisfy win < w. Thus, the long-wavelength approximation, 

loJinaq(t)l << 1 

which is basic for the linear expansion, follows from equation (49). which is slightly stronger 
than the non-relativistic assumption (ruling out unbounded non-relativistic motions). 
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The consistency of the assumption of perfect reflectivity may be checked in a similar 
way. Of course, any real mirror has a finite transparency frequency U,, so that the waves at 
frequencies w 2 o, are not reflected. If the motional spectral components are much smaller 
than 0,. then all the plane wave components that contribute to the dissipative force are 
perfectly reflected, and thus our model is realistic in this case. Therefore, the susceptibility 
function x [o] given by equation (42) should be regarded as a low-frequency approximation 
of the susceptibility function of a real mirror. This explains why dispersion relations are 
useless for such a model, since they involve the whole spectrum of frequencies. 

In other words, the results obtained in this paper for the dissipative force apply for a 
mirror that moves slowly (i.e. besides being small; the mirror’s velocity varies smoothly in 
time) on the time scale of its intemal degrees of freedom (which is of the order of l/&. 
Such internal variables (currents and charges near the mirror’s intemal surface) will just 
follow the field variations in this case, and may be completely ignored, as is usual in the 
adiabatic limit. 

However, the computation of the dispersive force is clearly inconsistent with our 
assumptions, because Rex[&] results !kom the integration over the unbounded region R4 
in figure 2. Accordingly, we understand why the model leads to unphysical results in the 
case of a three-dimensional space, for both electromagnetic and scalar fields (cf [41). On 
the other hand, no divergence occurs for one-dimensional models [2,4], since the scattering 
does not generate evanescent waves in this case (incidentally, this limiting case corresponds 
to the scattering of waves with k, = 0, so that the one-dimensional linear model may be 
considered from the results presented here. as well). 

As a final remark, we note that the derivation of the stress tensor (ST,(x, t ) )  given by 
equation (39) is self-consistent when 1x1 >> IQ(t)l,  for the main contribution in the integral 
of equation (27) comes from input waves of kequencies ojo 5 l / l x l ,  hence justifying 
the linear expansion. In other words, high-frequency evanescent waves do not contribute 
considerably at points far from the mirror’s surface, thus justifying our assumptions in this 
case. 

In conclusion, we have derived the electromagnetic fields scattered by a perfectly- 
reflecting moving mirror in the long-wavelength limit, allowing us to compute the 
modification of the Maxwell stress tensor induced by a non-relativistic bounded motion 
in vacuum. The contribution of high-frequency plane-wave field components which are 
scattered into evanescent waves leads to a divergent dispersive force. On the other hand, 
the dissipative force is related to the motional creation of travelling-wave photons. Our 
result agrees with the fluctuationdissipation theorem of linear response theory. 
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Appendix A. Derivation of the scattered fields 

We derive the fields scattered by a moving minor up to first order in the mirror’s 
displacement 6q. Our method is based on the decomposition of the elecaomagnetic fields 
into TE and TM components followed by a careful choice of the vector potentials used in 
the representation of each component. 
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We first decompose the Fourier transformed electric field (defined as in equation (5)) as 

EIx, kii, 01 = EnE)b, kli, 01 + EVM)[x, kit, 01 (-41, 
where En%, kll, 01 is the component along the direction perpendicular to the plane 
containing 2 and kll (plane of incidence). Then we define E f l w ( ~ ,  t )  as the inverse Fourier 
transform of Em)[,, kll. 01, and proceed likewise for E m ) .  Equation (Al) yields 

642) 

(-43) 

E(?-. t )  = EVE)(,, t )  + EVM’(T, t ) .  

B(T, t )  = BW)(T, t )  + BW)(7-, t ) .  

EO(,, t )  . i = o 

We have an analogous decomposition for the magnetic field 

The decomposition entails 

B”W(T, t )  . .? = 0. (-44) 
The simplest way to implement the Lorentz boost along the x-direction is to represent 

the TE and TM field components in equations (A2) and (A3) by the vector potentials 
A ~ ) ( T ,  t )  and Am’(?-, t )  as in equations (2) and ( 1 2 h f  equations (18) and (19), which 
jointly with equation (A4) entail AVE)(r, t )  * 2 = Am ( T ,  t )  . i = 0. Therefore, the 
vector potentials A ’ ~ ) ( T ’ ,  t‘) and d’“(v’, t‘) measured in the Lorentz instantaneously 
co-moving frame obey the relations 

(-45) 
Equation (AS) yields the following expressions for the electric field measured by the co- 
moving observer on the surface of the mirror: 

E”) lmi- = - ( & + W t ) &  + U(S~2))A”(Sdt). T I I .  t )  (-46) 

2 x E”) lmimor = -( a, + s m a ,  + o(sq2))Am)(~~(t), rII ,  t ) .  (A71 
Combining equations (1) and (A7) immediately Gelds equation (14). On the other hand, 
equation (A6) relates E”) to the total time derivative of A”’)(Gq(t),~ll.t). 
Equation (1) then entails a constant value for An’)(Sq(t),  TI^, f), which is taken to be 
zero without loss of generality, in accordance with (4). 

The solution of the boundary conditions given by equations (4) and (14) is as follows. 
We first consider the Dirichlet boundary condition given by equation (4). We assume that 
the fields are nearly constant over a distance of the order of 6q(t). We use equation (8) and 
then expand equation (4) around x = 0 up to first order: 

A$?O, T I I ,  t )  + Sq(t)&A~’)(o, T I I .  t )  

A’”(?’, t‘) = A”’)(T, t )  A”’(T’, t’) = A“”(T, t). 

= -[AF)(O, +II ,  2) + M t ) a , A , ~ ) ( o ,  T U ,  01. 
For a mirror at rest, the scattered field is given by 

A T ) ( x ,  T I I .  t )  = -~Y) ( -X ,  pii. 0. 

(-48)~ 

(-49) 
which corresponds to the wave reflected by a perfect mirror at rest at x = 0. The 
Fourier transform of the field given by equation (AS) is indeed the first term in the RHS of 
equation (9). It then follows that 

ax@’% l~ll,0‘1= sgn(on - k & Q T O ,  kll, 0’1 + 0(6q), W O )  
where sgn(x) = 0 ( x )  - e(-,) is the sign function. 

We consider the effect of the mirror motion to be a small perhubation. Accordingly, we  
replace the partial derivative of the scattered field in the RHS of (A8 )-which is already of 
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first order-by using the zeroth-order result given by (AlO), in order to obtain a boundary 
condition for the scattered field which is valid up to first order in 6q[w]: 

AY$[O, kll, 01 = -4?)[0, kll, 01 

-2 J --e@ - k ; ) ~ q [ w  - ~ I ~ , A ~ ) I O ,  kll, 0'1. (All)  

We have thus eansformed the homogeneous Dirichlet condition on a moving boundary 
given by equation (4) into the inhomogeneous condition on a plane ut rest at x = 0 given 
by equation (A1 1). which may be more easily solved. 

The scattered field at x < 0 is a solution of the wave equation written in the mixed 
reciprocal space: 

(-412) (a: +U' - kf)Ap"'[x, ka, 01 
which propagates (or is damped) from the plane x = 0 into the half-space x < 0 

ArE'tx, kll, 01 = exp(-ikxx)A,"[O, kll, w] ( ~ 1 3 )  

with k, defined as in equation (7). For a standing mirror, we thus have AFK)[O, ICll, 01 = 
-Ar)[O, kll, wl, and then equation (A13) yields the result €or the normally-reflected field, 
equation (AS). The first-order motional correction, equation (IO), follows from (AI 1) and 
(A13). 

The solution of the boundary condition (14). corresponding to mi-polarized waves, is 
obtained by a similar method. We first transform (14) into an inhomogenous Neumann 
boundary condition by using the zeroth-order result 

.#To, kll,wl= sgn(wZ - kif)4?[0, kll,01+ ~ q ) .  (-414) 

Equations (14) and (A14) then yield 

~ , ~ ( W I O ,  kn, 01 = -a,4?'[0, kR, 01 - 2 --e(K,')iiq[o - W'I J: 
X ( k t  - ww').4y'[O, kll, 0'1. (-415) 

The field Am(?, t )  is also a solution of the wave equation (A121 that propagates into 
the half-space n < 0 according to equation (A13). Hence it may be'written as: 

Finally, equations (15) and (16) follow from equations (A1.5) and (AM). 
Equation (16) predicts a divergent motional contribution when the output direction is 

parallel to the plane of the mirror (kx = 0). This effect is similar to the Woods anomalies of 
light scattering by diffraction gratings [13]. One may then be sceptical about equation (A15) 
since it was derived by assuming the motional effect to be small. In fact, a more general 
result may be obtained if the output field is not replaced by the RHS of equation (A14) in the 
first-order term of the expansion of equation (14). We then find a non-linear result which on 
one hand is regular at w = kli and on the other hand agrees with equations (15) and (16) at 
frequencies corresponding to output fields far from the grazing direction [14]. Although the 
linear approximation breaks down for output fields along the grazing direction, the smss 
tensor in vacuum is not modified, essentially because the non-linear correction occurs over 
a very small region of the spectrum. 
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Appendix B. Canonical quantization with the potentials Am) and AnM) 

In this appendix, we develop the canonical quantization of the electromagnetic fields in 
terms of the vector potentials Am) and Am) in free space. Following the method of [lS], 
we work with the reciprocal space, and then define the Fourier transformed field AfE’[k] 

(B1) 

and likewise for the field Am[k]. Note that the definition in equation (Bl) is different 
from ow previous one, given by equation (5). 

as 

Ay’[k] = 1 d3r e-iknApE) (r3 t )  

The standard Lagrangian of electrodynamics is 

L - - d3r [EZ(?-, t) - B’(T, t ) ] .  (B2) 
s l -  2 ‘S 

We decompose the electric and magnetic fields EJk] and BJk] into their TE and TM 
components as in equations (18) and (19) to obtain the following representation: 

(B3) 
d3 k 

L,t = la, Lst(AyE)[kl, d?’[kI, A)TE‘[kl, $M’[kl) 

where the Lagrangian density in reciprocal space L1 is given by 

Csl = IAyE’[k]12 - k21Ay’[k][2 - (IJyM’[k.]l2 - kZldy’[k]12). (B4) 
The integral in equation (B3) includes only one half of the volume of the reciprocal 
space, so that the potentials d y [ k ]  and Ay)[k] may be considered as independent 
dynamical variables, the fields at the other half volume being determined by the relation 

A“(r, t) and dm(T, t ) .  They represent the components of the corresponding vector 
fields along the polarization unit vector & given by equation (21). 

The terms corresponding to the   polarized fields appear with a minus sign in 
equation (B4). This is a consequence of the odd parity of L,, under the duality transformation 
(cf equation (B2)). We may easily derive the following Hamiltonian from equations (B3) 
and (B4): 

A, na [-k] = AyE’*[k], and likewise for dyM’[k], which follows from the reality of 

which does not correspond to the total energy. We may remedy such a problem by taking 
a Lagrangian density invariant under the duality transformation: 

Of course, Lagrange’s equations that follow from equation (B6) are identical to those 
following from the standard Lagrangian given by (B4). However, the former leads to a 
Hamiltonian which corresponds to the total field energy 

2 1 d3r [E*(r, t )  +BZ(r, t ) ] .  

The canonical quantization from i c d d  follows in the usual way (cf [lS]), leading to 
equations (18H23). 
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